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SUPERSONIC FLUTTER OF A THERMALLY STRESSED FLAT PANEL
WITH UNIFORM EDGE LOADS*

By Harry G. Schaeffer and Walter L. Heard, Jr.
Langley Research Center

SUMMARY

35958
The effect of a nonuniform, self-equilibrating stress state associated
with a parabolic temperature distribution is included in the flutter analysis
of a rectangular, simply supported panel subjected to airflow over one surface
and uniform edge loads. Linearized, static, two-dimensional aerodynamics is
used in conjunction with thin-plate theory to formulate the problem. Numerical
results for a square panel show that nonuniform self-equilibrating stresses are
as important as uniform stresses in affecting flutter behavior. /é?ZLlééﬂ)

INTRODUCTION

Dynamic instabllity of thin platelike structures in a gas flow is a prob-
lem which has recelved considerable attention in recent years. As a result of
the high velocities attainable by modern aircraft, severe aerodynamic loading
of exterior skin panels frequently occurs and can lead to panel flutter. (See,
for example, ref. 1.) In the treatment of panel-flutter problems, theoretical
investigators have taken into account such effects as panel configuration, flow
orientation, boundary conditions, and uniform midplane stress. However, effects
of thermally induced, self-equilibrating, midplane stress have not been
examined.

It has already been shown in reference 2 that a system of uniform stresses
can greatly reduce the flutter speed of an unbuckled panel. The purpose of the
present paper is to 1lnvestigate the effects of a nonuniform, self-equilibrating,
stress state on the flutter behavior of a flat, uniformly stressed panel. Since
a nonlinear temperature distribution could easily result from aerodynamic
effects, 1t is assumed for the present analysis that the nonuniform stress state
is thermally induced by a parabolic temperature distribution which is constant

through the thickness. However, the results are valid for any similar system
of self-equilibrating midplane stresscs.

*Part of the information presented herein was offered as a thesis by the
second author in partial [uifiilment of the requirements for the degree of
Master of Science in Engineering Mechanics, Virginia Polytechnic Institute,
Blacksburg, Virgina, December 1964.




For the purpose of this analysis the panel is considered to be simply
supported against lateral deflections, but unrestrained to inplane displace-
ments at the boundaries. In order to simplify the analysis the aerodynamic
forces are assumed to be those resulting from Ackeret theory. The analysis
proceeds by using the Galerkin technique in conjunction with an assumed stress
function to determine an approximate midplane stress distribution corresponding
to the assumed temperature variation and boundary conditions. This thermal
stress distribution 1s then substituted into the linear partial differential
equation governing lateral deflections of thin plates in combined bending and
compression. The Galerkin procedure is used again to obtain approximate solu-
tions for the flutter behavior, and numerical results are presented for a
square panel subjected to various combinations of uniform loading applied at
the boundaries.

SYMBOLS
amn amplitude coefficients (see eq. (11))
a panel length
b panel width
2
1+ (&

]

- 2 n

1+ LaY 4 (2
T\b b
5
D panel stiffness, B
12(1 - u2)
E Young's modulus
h panel thickness
i,j,myn,r,s integers
"
k2 = e 2
ﬁhD

(Il)rs’(IQ)rs’(I5)rs integrals defined by equations (13b) to (13d)

Krs = Mpg + Prg - 4Qrg - :—OKE)E + (%)2:]8-1'8




Lrg aerodynamic loading coefficient

A aerodynamic pressure load per unit area
M Mach number
Mrs coefficient defined by equation (A5)
Nx,Ny,Nxy midplane stress resultants
Nxos Ny, midplane uniform stress resultants
NXT’NyT’NxYT midplane thermal stress resultants
Prs coefficient defined by equation (A6)
q dynamic pressure
Qrs coefficient defined by equation (AT)
R total number of terms in flow direction
2
Rxo _ nga
<D
g =
1D
S total number of terms in cross-flow direction
t time
T temperature
ATy maximum amplitude of temperature distribution
w lateral deflection of panel
X,¥,2 Cartesian coordinates of panel
a coefficient of thermal expansion
V4 mass density of panel
(1 when 1 =3
813 =



2q_a3

A dynamic-pressure parameter, —————-
VM2 - 1
Aer critical value of A
7l Poisson's ratio
) Airy stress function
aEhaAT)
¥ thermal stress parameter, —e———
72D
2
C (a
v=- 3 v
72\b
) generalized eigenvalue
w frequency
Notation
2 .
V2= ()t ()yy

VA

( ):xm+2( ):XXYY+( );my

When subscripts follow a comma, they indicate partial differentiation
of the principal symbol with respect to the subscripts.

STATEMENT OF PROBLEM AND ANALYSIS

A flat, rectangular panel of length a, width b, and uniform thickness h,
as shown in figure 1, is considered in thils analysis. The panel is simply sup-
ported on all edges, exposed to supersonic airflow at Mach number M over one
surface, and subjected to a nonlinear temperature distribution T = T(x,y) in
the middle plane. The panel edges are considered to be unrestrained to thermal
expansion; however, uniform loading, Nx, and Ny,, which is Independent of

the temperature distribution may be applied at the boundary.
Basic Equations
In this analysis thin-plate theory including the effects of inplane loads

is used. The basic equilibrium equations for this case are

Dvhw + wa,xx + 2nyw,xy + Nyw,yy + 7hW,tt =1 (1)
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Ne,x *+ N,y =
(2)

NY:Y + ny’x =0

It is assumed that Ny and Ny are positive in compression and that all mate-
rial properties are to be evaluated at the average panel temperature.

An approximate expression for the aerodynamic pressure load 1 1s obtained
by use of linearized, static, two-dimensional aerodynamics (Ackeret theory).
This approximation not only greatly simplifies the analysis, but as shown in
reference 3, ylelds essentially the same flutter results as exact aerodynamics
at M2 1.3 for uniformly stressed panels, except when the stress level causes
two modes of oscillation to have the same, or nearly the same, frequency. Thus,
if care is taken to avoid these stress levels, Ackeret theory should also be
applicable to the nonuniform stress problem of the present analysis, so that

(3)

The midplane force intensity terms in equations (1) and (2) are written as
the sum of those induced by applied, uniform, normal forces at the boundary
(subscript o) and those resulting from the nonlinear temperature distribution
(subscript T) as follows:

Nx = Nxo +NXT
Ny = Nyg + Ny (%)
Nxy = NXYT

The thermally induced stresses are determined in terms of a stress func-
tion ¢ = 9(x,y) defined by the following relations:

NXT = CP)}'Y
NyT = q),xx ‘ (5)
NXYT = -%xy

This stress function 1dentically satisfies the equilibrium conditions glven by
equations (2). For compatibility of inplane strains, the stress functicn must
satisty the following partial differential equation (ref. k4):

Ho = «ELVRT (6)

where a 1is the coefficient of thermal expansion at the average plate tempera-
ture and the temperature T 1s a function of x and y. Note that the sign



of the right-hand side is opposite to that normally encountered, because direct
stresses are positive in compression.

The panel boundary conditions have been chosen in such a way that they can
be satisfied by using rather simple functlions. Thus, the resulting flutter
analysis 1s greatly simplified, but still predicts trends which one may expect
to be valid for the actual panel.

The condition that the panel be free from thermally induced normal and
shear stresses on the boundaries requires that the stress function satisfy the
following boundary conditions:

CP(O)Y) = (p(a)}') = Q)(X,O) = CP(X,b) =0 (7)
q)’x(oyy) = (P,x(a)Y) = Q)’y(X,O) = (P,y(x;b) =0

The condition that the panel boundaries be simply supported requires that
the displacement function satisfy the following boundary conditions:

w(0,y,t) = w(a,y,t) = w(x,0,t) = w(x,b,t) =0
(8)

W,xx(O)Y:t) = W,xx(a:y,'t) = W,yy(x:o)t) = W,yy(x)byt) =0
The analysis which follows consists of two parts. First, the coefficlent of an
assumed stress function ¢ 1s determined approximately by using the Galerkin
technique; then, the stability determinant is determined from the deflection
equation, again by using the Galerkin technique.
Solution of Stress Function Equation

The temperature distribution, considered in this problem, varies paraboli-
cally in the flow and cross-flow directions and may be represented by

m = (E) - E)E)E - B

where ATy 1is the maximum amplitude of the temperature distribution.

In order to simplify the subsequent flutter analysis, it is assumed that
an approximate stress function is of the following form:

o - comn3 (e e g -f

This approximation of the stress function satisfles all the boundary conditions
given by equations (7), but does not satisfy equation (6). The best fit 1s made
by applying the Galerkin technique to equation (6) to evaluate the constant C.
The result is
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The accuracy of equation (9) in approximating the true stress state associated
with the temperature distribution will be assessed subsequently.

5 (10)

Solution of Differential Equation

It is assumed that the solution of equation (1) can be represented as
follows:

w(x,y,t) = Re zz }: apy Sin EEE sin n;y glot (11)
=1l n=1

where the frequency w 1is, in general, complex. Each term of the assumed
solution satisfies the given boundary conditions on w.

After substituting equations (3), (%), (5), (10), and (11) into equa-
tion (1) and applying the Galerkin procedure, the following set of eguations is
obtained for the amplitude coefficients app:

L a a a 2 _
) ;IE :D-[(Il)rs *e E(Ie)rs + (3) (IB)rs =0 (12)
where
L L b pa mX o TAX o DY oo STY 5o (132)
T abd mapp cos == sin =g= sin =g sin =& dx dy 3a
0 0 m=1 n=1
Lo oo

o,

S
>~
>~
B
g
F=]
g

X sin 2% sin 2 gin sgy dx dy (13b)

a a b
m=1l u=
reope v
[T\ f mrx TRX iy STy
F2)rs = gj ZJ ZJ mam® xy €08 —5— sin == cos 5 sin - dx dy (13c)
0 0 m=1 n=1



[} ©0
b a
2 mmx nx s
(3)rs = fo fo z Z nZam®, o s1n B sin X sin S¥ stn L ax ay  (13a)

m=1 n=1
r=1, 2, 3,
s =1, 2, 3,
and
o) 7hauw2
kK- =
nuD
- Nxoa
o n2D
2
. ) Nyoa
Jo “QD

The integrals (Il)rs’ (Ig)rs, and (I3)rs which arise due to the nonuniform

stress distribution and the integral L,g which arises due to aerodynamlc

loading are evaluated 1n appendix A. By using the results of appendix A, equa-
tion (12) becomes

[e+ 68" o - mfpyee o e @

A +80a21< =0 (14)
+ Alpg —§<g> VKpg =
7
where
r=1, 2, 3, R
s =1, 3, 5, 258-1
and
C(EhaEAI‘J_
v o=
72D




Krs = Mpg + Ppg - 4Qpg - Ela[(%)g + (%)2]&1.8

The coefficients Lpg, Mpg, Prg, and Qpg are defined by equations (Al),
(A5), (A6), and (AT), respectively.

The parameter VY 1is analogous to the nondimensional, midplane, uniform
stress parameters Rxo and Ryo and may be thought of as a thermal stress

parameter. The range of the indices r and s 1is R and 2S-1, respectively,
where R 1s the total number of sine terms in the flow direction and S is
the total number of sine terms in the cross-flow direction. Only the sine
terms corresponding to an odd number of half waves in the cross-flow direction
need to be considered, since, for the symmetric temperature distribution used,
even and odd cross-flow terms uncouple and the odd terms lead to the lowest
(critical) flutter speed. Thus, equations (14) represent RS (R-times-S)
linear, homogeneous, algebralc equations for the RS unknown amplitude
coefficients ayg. In order that nontrivial solutions of the system of equa-
tions (14) exist, 1t i1s necessary that the determinant of coefficients wvanish.
Thus, the stability criterion may be written in the following form:

det (A1 - 2813) = O (15)
where Q 1s the eigenvalue.

Since the problem is one of determining the stability of a given form of
solution, it is most natural and advantageous to associate the eigenvalue with

the frequency parameter k2. Then, for the nonconservative problem, the system
is dynamically unstable when the eigenvalue Q Dbecomes complex. This implies,
according to equation (11), that the system diverges in an oscillating fashion.
The problem now is to determine the relationship that must exist between the
parameters a/b, Rxg» Rygy N k2, and V¥ 1n order that the system be stable

in the sense described.

For the case where R =2 and S = 1, that is,

W = (all sin %§-+ ap] sin g§§>sin %g elot

equation (15) simplifies to the point where it is possible to determine an
analytical expression for values of A corresponding to harmonic motion of the
panel. This result is



e mf - [ @ -2 (0T

4R, - Ry (2Y _ x2 4 0:85C/a g /e
xo = Ryolp) - &+ (5) v (16)

The critical value of A can be found by maximizing A, expression (16),
with respect to k2. Solving for k2 and substituting the result into equa-
tion (16) gives

2

> - Rxg + 2(2) + ZLE(EYy

_ or*

Aer =

¥ (17)

where Aop 1s the critical value of the dynamic-pressure parameter which leads
to flutter.

For higher ordered modal solutions, the algebraic difficulties in obtaining
expressions similar to equations (16) and (17) are formidable, and recourse is
made to an iterative procedure using a digital computer. For the computer solu-
tion the eigenvalues are calculated, and the lowest value of A for which two
of the eigenvalues coalesce is sought. The approximate modal solutions con-
sidered are for the cases where R =4, S=1;R=6, S=1; R=6, S =2
and R =6, S = 3. The coefficients associated with the latter case have been
calculated from equations (lh), and the general matrix equation 1s presented in
appendix B. The coefficients associated with the other cases can be determined
by deleting appropriate rows and columns.

DISCUSSION OF RESULTS

Thermal Stress Distribution

An approximate stress distribution has been assumed in order to simplify
the subsequent dynamic analysis. Since the purpose of this paper is to deter-
mine the effect of the stress state associated with a nonlinear temperature dis-
tribution on the flutter characteristics, it is important to consider the accu-
racy with which the stresses obtained from the assumed stress function approxi-
mate the true stress state. The true stress state associated with the parabolic
temperature distribution has been determined by the finite-difference method of
reference 5.

Comparisons between the one-term approximation and a finite-difference
solutlion are presented in figures 2 and 3. Figure 2 shows the variation of
NxT with x for specified values of y, and figure 3 shows the variation of

nyT with x for specified values of y. The normal stress determined by the

10




one-term approximation and that determined by the finite-difference solution
agree quite well (fig. 2). In the case of the shear stress distribution

(fig. 3), the agreement in magnitude is not as close as that for the direct
stresses; however, it appears that the agreement is sufficlently close so that
the overall results can be interpreted with confidence.

Effect of Temperature Distribution on Flutter Boundary

The effect of the parabolic temperature distribution on the flutter
behavior of a square panel free of uniform midplane stress is shown in figure k4.
The results are presented for a 6-by-3 (R = 6; S = 3) term solution. The inter-
section of the flutter boundary with the A-axis is the value of Ayr assoclated

with the unstressed, unheated panel. This value decreases as V¥ increases
(Aml increases),until the flutter boundary becomes tangent to the curve labeled

"thermal buckling loop."

The three regions shown in figure L4 are characterized by the value of the
frequency parameter squared (ke). In the region labeled "panel flat, no flut-
ter," k€ 1is real and positive; hence, ® 1is real. In the region labeled
"flutter," k° is complex; thus, o 1is complex and at least one root will lead
to oscillating, divergent panel motion. In the region labeled "panel buckled,
no flutter," k2 1is negative; thus, o is pure imaginary and the panel is
statically unstable.

These three regions are separated by two boundaries. The first 1s the
buckling loop which is the locus of points for which Kk = 0. The second 1is
the flutter boundary which is the locus of points at which two frequencies
coalesce. The flutter boundary is terminated at its point of tangency with the
statlic buckling loop, since this point represents the limit of linear plate
theory. This transition point is of considerable importance, because experience
has shown that it represents the lowest value of A, associated with this

panel configuration.

Figure 4 shows that the stress distribution associated with a parabolic
temperature distribution can cause a 6l-percent reduction in the value of Aer
assoclated with an unheated, unstressed panel. In order to give an indication

of the magnitude of AT] which causes an effect of this order, AT; 1is com-

puted for a representative square aluminum panel with % = 300. The results

show that a temperature difference of only 27° F between the center and the
edges of the panel causes the 6l-percent reduction in Acp.

The effect of the parabolic temperature distribution on the flutter bound-
ary asscciated with uniform compressive loads in the flow direction is shown in
figure 5 for the 6-by-3 term analysis. The curve labeled "} = O" is essentially
the exact solution established in reference 2 and shows how the critical value
of the dynamic-pressure parameter varies with applied uniform loading in ihe
flow direction. Increasing values of ¢ lower the flutter boundary.

11




The regions of stability and instabllity are not shown in figure 5 but are
similar to those shown in figure 4; however, in figure 5 the dynamic-pressure
parameter is plotted against Rx, instead of V¥. For every curve represented

by some constant value of V, there is an associated buckling loop. The dashed
line represents the locus of points where the flutter boundary becomes tangent
to its corresponding buckling loop.

The decrease in A,y due to a parabolic temperature distribution 1s of the
same order of magnitude as the decrease iIn Aqr due to a uniform compressive
load in the x-direction. The comparable reductions in Aqpr due to the two dif-

ferent parameters indicate that the effect of the nonuniform temperature dis-
tribution is as important as that of uniform compressive stress. Since the
nonuniform stress distribution could have resulted from causes other than a
temperature distribution, the previous statement can be generalized to say that
any system of nonuniform self-equilibrating stresses may have a significant
effect on panel flutter behavior.

Reference 2 shows that uniform compressive loads applied perpendicular to
the direction of airflow have virtually no effect on the flutter of a uniformly
stressed panel. It 1s of interest, therefore, to investigate the effect of
Ry, for the present case. In figure 6 the relation between Acr and Rxo, 1s

presented for various values of the stress ratilo RyO/RxO. The differences in
the flutter boundaries due to Ryo are not significant and cannot be plotted

on the scale presented. However, the transition point between the flat-panel
and the buckled-panel flutter boundaries 1s significantly affected as indicated
by the loci of termination points of the flat-panel flutter boundaries. Thus,
for the given range of parameters and the assumed nonuniform stress distribu-
tion, the results of figure 5 may be used to predict the flutter behavior of a
square panel with good accuracy for any combination of Rxg, Ryo, and V¥ which

does not cause the panel to buckle. Only the terminal points need to be
located. The loci of these terminal points for several values of the stress
ratio are shown in figure 6. The curves apply for the stress-ratio range

0< ~ZQ-§ 1 only, since large positive values and large negative values of the

Xo
ratio may yield different results because of changes in buckling mode shapes in
R
the cross-flow direction. When ﬁzg =1, the locus of termination points of
X0

the flat-panel flutter boundary is essentially a horlzontal line. Thus for
this stress ratio, the theory predicts that the transition point is essentially
independent of the relative magnitudes of applied uniform stress and thermal
stress.

Since the results presented in this paper were obtained by applying the
Galerkin technique, there may be some question as to convergence toward the
exact solution of the problem. In order to investigate the question of con-
vergence, results for various approximate solutions are presented in figure 7.
The flutter boundaries of A, as a function of Rxo for values of

12




¥ of 10, 20, 30, and 40 are presented in figure 7 for the 2-by-1, L-by-1,
6-by-l, 6-by-2, and 6-by-3 term analyses. The solld curves represent results
of the 6-by-2 and 6-by-3 term analyses whereas the other curves represent the
results of the lower order solutions.

An examination of figure 7 shows that the flutter boundary is significantly
altered when the number of terms in the flow direction is increased from two to
four. However, a further increase to six terms exhibits very little effect;
thus, the solution is assumed to be converged for flow-wise terms. The require-
ment of relatively few flow-wise terms for convergence 1s not unexpected, since
for this range of parameters a four-term solution gave a close approximation to
the exact solution in reference 2 where § 1s zero.

Inclusion of two cross-flow terms in the analysis instead of only one
exhibits only a very slight lowering of the flutter boundary as may be seen by
comparison of the 6-by-1l and 6-by-2 solutions. (For the scale shown, the
6-by-1 and 4-by-1 results are coincident except in fig. 7(a) where the 6-by-1
solution gives the higher values of Acr.) Inclusion of three cross-flow terms
glves essentially the same results as the 6-by-2 solution and indicates that
the 6-by-2 solution 1s converged for the range of V considered.

CONCLUDING REMARKS

Nomuniform stresses associated with a parabolic temperature distribution
are shown to be as important in affecting panel flutter behavior as uniform
loading applied in the direction of airflow. It is also shown that although
uniform loading applied perpendicular to the direction of airflow has virtually
no effect on the flutter boundaries for values of the stress ratio Ryo/Rxo

from O to 1, the transition point between the flat-panel flutter boundary and
the buckled-panel flutter boundary 1s significantly affected. As this stress
ratio approaches the value of 1, the transition point becomes essentially inde-
pendent of relative magnitudes of applied uniform loading and thermal stress.

Because of the effects of the nonmuniform stresses shown herein, it appears
that thermally induced nonuniform stresses should be considered in the correla-
tion of experimental flutter results with theory. In fact, consideration should
be given to any system of nonuniform, self-equilibrating stresses, even those
resulting from causes other than a nonlinear temperature distribution.

Langley Research Center,

National Aeronautics and Space Administration,
langley Station, Hampton, Va., August 12, 1965.
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APPENDIX A
LOAD COEFFICIENTS

Evaluation of the integral resulting from the aerodynamic loading
(eq. (13a)) gives the following expression:

R
o Temg
Lrs = m
n -

=1
mfr

[]P: _ (_l)r+m] -

r-m2

where the notation m # r indicates that the terms in the sum assoclated with
m = r are to be omitted.

The integrals (Il)rs’ (Iz)rs’ and (IB)rs given by equations (13b),

(13c), and (13d), respectively, are evaluated by making use of the specific
definition of the stress function given by equation (9). The result is

3
2CaFha~ AT
(Il)rs = “":;5;“;£ Mps (A2)
4CaFhaAT,
(IE)rs = 2 Qrs (A3)
2CakhabAT
(IB)rs =- ﬂé“‘i Prs (AL)
where
R 2S8-1
721n2ns[(-1)n+s . 1] [(_l)m+r + l] [(m + r)h - (m- r)){l
e mzl n=>;5 &mn{ (n - 8)2(n + 8)2(m + 0)¥(m - D)
mr nfe
- ERN)E . 3 ‘] Eil ns|:(—l)n+B + J]arn
w2 60 u(rm)?) Gy (n- e)¥n 4 )
nfs
9 i mg[(_l)m*-r + l] [(m + r)u - {(m - r)){} 8o
S o (n + 2w - )t
mfr
2
* %(E) &%5 ¥ u(i“)%]ars @)

1k




* APPENDIX A

R 25-1 [72n2mr[(-1)m+r . J;I [(_l)n+s + l] [(n " s)h - (n- s)lfl}
), )

o R L (n - s)J*(n + s)l"(m +1)2m - )2
mfr ngs
121—(sn) Z mr[( l) * l 2ms
2L50 l+(syt)2_]m=l (m - 0)}3(m + r)2
mfr
9 st nal:l + (-l)n+s] [(n + s)J‘L - (n - s)lEI oy
;E;E <L, 3 (n + s)*(a - s)u
nfs
3(s\3[1 3]
+2) [35 " e (6)
R 25-1
Qe = z z 25_!{ amn[(_l)nﬂ . 1] [(_l)m+r . ;J
m=l n=1,3 ©
mfr ngs

N R RN CRE ] [[CR A R
LG -ns+0)? || (¢ +m3r - m)3
R
Z mE_l)m+r . l] {i(r - m)3 +(r + m)3-|ams

+
Lolts2 m=l (r - 2)3(r + m)3 _I

25-1

Qs—n)ji-(si‘n)3
1 1
hzﬂ}fj li( ) ' [(s-n)3(5+n)3:]
9
;;TEE Brg (A7)

As in equation (Al), the notation m # r, n # s indicates that the terms in
the sums associated with m =r and n = s are to be omitted.
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ONE-TERM APPROXIMAT JON
— — — — FINITE-DIFFERENCE SOLUTION

. A Y Y Y . x _ _
Figure 2.- Variation of siress resuitant Nyp with x. 7= |6AT1[\§)K1 - EXB)Q - lb) b 1; symmetric about 37 0.5 and % = 0.5.
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Figure 4.- Thermal flutter boundary for square panel with no externally anplicd forces
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Figure 5.- Effect of thermal stress parameter ¢ on flutter boundary of a square panei with uniform edge loads in flow direction.
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Figure 6.- Effect of thermal stress parameter ¢ on flutter boundary of a square panel with uniform edge loads in x- and y-directions.
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Figure 7.- Comparison of approximate solutions.
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